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Abstract One of the classical topics in geometry is the ruler and compass con-

struction of good approximations of the regular nonagon. We propose a method to

choose a desired error of approximation, based on new linear third-order recurrence

relations. It is related to patterns shown on the balustrade of minbar of Selimiye

Mosque in Edirne (Turkey, 1569–1575), where apparently regular nonagons are

placed over a net of regular hexagons. This kind of ornament also occurs in Hagia

Sophia in the minbar, in freezes stucco carvings and in window grilles. In Medieval

Islamic art and architecture the use of the nonagon is not frequent, but it is

remarkable that this particular grid of interlocked nonagons and hexagons appears in

the decorations of the works of Ottoman architect Mimar Sinan. The pattern is

present in his masterpiece, the Selimiye Mosque, in the Hagia Sophia and in other

works in the Istanbul city. Looking at practical ways for the construction of the

pattern, we provide simple procedures to obtain angles close to 40� that could have

been useful for a craftsman to realize the nonagonal geometric designs. In partic-

ular, almost regular nonagons are constructed using some elementary shapes that are

related with semi-regular tessellations. We compare the patterns obtained through

theoretical considerations to those displayed in the examples given above. Several

hypotheses are proposed for the practical construction of the interlocked hexagonal

patterns for nonagons.
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Introduction

A classical Greek topic in geometry was to determine the regular polygons that are

constructible by compass and ruler, in a finite number of steps. The equilateral

triangle, the square, the pentagon and the hexagon all are constructible, but

heptagon is not, nor is the nonagon. A related classical topic is the ruler and

compass construction of the angle of 40�, that is, the angle in the centre of a

nonagon pointing to two adjacent vertices. In the late eleventh century, Muslim

architects and mathematicians discovered some approximate constructions of the

regular nonagon. Indeed, in the Seljuk period (1038–1194) and in Mamluk

architecture (1250–1517) geometric decorations show mainly patterns with stars

with five, six, eight and ten points, as well as twelve and sixteen, although some

stars with seven and nine points appear as well, and even some stars with eleven and

thirteen points (Fig. 1).

Later on, some nine-pointed stars appear (in other words, concave eighteen-sided

polygons) made by connecting vertices of other constructible polygons. However,

the regular convex nonagon is not frequently determined by these methods. Almost

regular nonagons placed over a net of regular hexagons can be found in the

balustrade leading to the minbar of the Selimiye Mosque in Edirne (Turkey,

1569–1575; Fig. 2).

This kind of ornament also occurs in Hagia Sophia in the top of the frieze and in

the stucco carvings of the gallery or mahfil of Sultan Murad III (1574–1595; Fig. 3),

in the grill on the upper level of the Library of Sultan Mahmud I (1739; Fig. 4), and

in the minbar in the rosette decorating the end of the staircase (Fig. 5).

The use of the nonagon is not frequent. It is remarkable that this particular grid of

interlocking nonagons and hexagons often appears in the decorations of the works

of Ottoman architect Mimar Sinan. Decorations similar to those in the Selimiye

Mosque and the Hagia Sophia can be seen in his mausoleum of Shehzade Mehmet

Fig. 1 a Left Mamluk woodwork on the minbar in al-Ghuriyya Complex, Cairo, Egypt (1505) (Wade
Photo Archive EGY1722); b right star dome of the Shrine of Shah Ni’Matuollahi in Mahan, Iran (1436)
(WADE Photo Archive IRA 2313)
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in Istanbul (1557; Fig. 6) and in the balcony of the minaret in the Mihrimah Sultan

Camii in Uskudar, Istanbul (1546–1548). Also in Istanbul, the pattern occurs in the

mausoleum of Koca Sinan Paşa (1596) by Mimar Davud Ağa, a student of Mimar

Sinan. Surprisingly, the pattern appears in India too, in a panel decorating the

outside of the Red Fort in Agra, built by the Mughal dynasty in the time when the

Ottoman Empire reached until India (1550 EC), and in the Jaypur Palace built

during the Rajput dynasty (Fig. 7).

This paper studies the geometry of this nonagonal pattern. It presents original

results for the regular nonagon and looks at practical ways to approximate its

construction. It gives simple procedures for obtaining angles close to 40� that could

have been useful for craftsmen to realize the nonagonal geometric patterns.

Observation of the patterns provides mathematical arguments to analyse the

Fig. 2 Minbar of the Selimiye Mosque in Edirne (Wikimedia Commons) and detail of the decoration in
woodwork carved (WADE Photo Archive TUR 0117)

Fig. 3 a Left Muezzin galleryor mahfil, Hagia Sophia; b right a detail of the stucco carving in the frieze.
Photos: authors
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Fig. 4 a Left the Library of Sultan Mahmum I, Hagia Sophia; b right detail of the grill on the upper
level. Photos: authors

Fig. 5 a Left Minbar of Hagia Sophia; b right detail of the rosette in the panel decorating the end of the
stairway. Photos: authors

Fig. 6 a Left Sculpture of Master Sinan in the garden of the MET University, Ankara. Photo: authors;
b right window grill of the Mausoleum of Shehzade Mehmet, Istanbul (WADE Photo Archive TUR 1130)
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hypothetical regularity of the nonagons of the pattern. Finally, the pattern will be

constructed in different ways.

Mathematical Prerequisites

Given a regular nonagon ABCDEFGHI, the numbers a, b and c (a\b\ c) usually

denote the ratios between the three diagonals of the polygon and its side (see

Fig. 8a). Without loss of generality, we will always consider regular nonagons with

side AB = 1, so that AC = a = 1.87938…, AD = b = 2.53208… and

AE = c = 2.87938….

The six diagonals with common vertex A dissect the nonagon in seven triangles

ABC, ACD,…, AHI, where \BAC ¼ \CAD ¼ � � � ¼ \HAI ¼ 20�, so that \BAE ¼
60� and \ABG ¼ 60�. Thus, the triangles ABJ, KDE and HLG shown in Fig. 8b are

Fig. 7 a Left Red Fort, Agra, India, 1550 EC (WADE Photo Archive IND 0336); b right Maharajah’s
Palace, Jaipur, India, 1700 EC (WADE Photo Archive IND1006)

Fig. 8 a Left The three ‘‘diagonal/side’’ ratios of the regular nonagon; b right equiangular (though not
necessarily regular) hexagon ABDEGH and the derived equilateral nonagon
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equilateral with side 1 and the quadrilateral ABDK is a parallelogram. Hence,

Fig. 8b is an illustration of the relation c = a ? 1.

In Fig. 8 we define an equiangular hexagon, ABDEGH, with angles 120� and

with sides of alternating lengths 1 and a. Three congruent isosceles triangles, CDB,

EFG and HIA, with sides 1, 1 and a are added to it. Note that for any two lines

segments of lengths a and b, with b/2 \ a \ b, we can construct a general

equiangular hexagon with shorter side a and longer side b, deriving a nine-sided

equilateral polygon whose regularity depends on the value of the ratio R = b/

a where 1 \ R \ 2 (Fig. 9). Thus, each value of R generates an equilateral nonagon

that will be regular only if R = a. The case a = b (R = 1) is not considered because

that equality implies the hexagon is regular, and then the derived nonagon is an

equilateral triangle. The case b/2 = a (R = 2) is not considered because the

nonagon derived in a similar way is the initial hexagon.

For each of these equilateral nonagons an equilateral triangle PQR is obtained by

extending their sides AB, DE and HG (Fig. 10).

Since equilateral triangles allow covering the plane, equilateral convex nonagons

and six-pointed stars may generate interesting tessellations using symmetries and

equilateral triangles (Fig. 10). Elementary rosettes of these tessellations can be

obtained by successive reflections with respect to one side, or equivalently, by

successive rotations over 60� with a vertex as centre.

An additional translation of the nonagons towards the centre of the rosette

generates an interesting family of patterns (Fig. 11). In Fig. 12 we recognize the

rosette of the grill and derived friezes shown in Figs. 2, 3, 4, 5 and on the right of

Fig. 11.

The nonagons of the patterns in the given examples are perceived as regular, but

later we will examine how close this apparent regularity comes to an exact

regularity. Equilateral nonagons with easily perceptible irregularity appear in the

Fig. 9 The equiangular hexagon with alternating sides a and b (above) and equilateral nonagons for
different values of R (below)
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decoration in the tympanum of Gonbad-e Sork, Maragha, Iran, dated 1148 (Fig. 13).

This unique intricate pattern shows a layer of interlaced non-regular nonagons

shaped as on the right of Fig. 10, but with alternating up-down orientation. A layer

of dodecagons is added, over a double hexagonal net. Although the variable

orientation of the nonagons implies differences in the rosette as a whole, this

decoration can be considered an example of the generation of nonagonal patterns by

the given procedure. Figure 14 shows how the external ring of nonagons is the

Fig. 10 Left equilateral triangle PQR generated by the nonagon and its common mirror image by
reflection with respectto r or by a rotation over 60� with centre the vertex O; right two rosettes

Fig. 11 Translation of the triangles yields a rosette with interlaced nonagons

Fig. 12 Overlaying diagrams showing the rosette of interlocking nonagons obtained by the extension of
polygons beyond the boundary of the frieze. Overlay sand photos: authors; see Figs. 2 and 3)
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reflection of the central rosette, which results after some translation of the nonagons

of an initial rosette as given in the right of Fig. 10.

The ratios a, b and c satisfy a large number of relations between them (Steinbach

1997:26) thus generalizing the golden section. Sixteen different identities hold

involving two or three of these ratios.

�

a
1
¼ 1þb

a ¼
aþc
b ¼

bþc
c

b
1
¼ aþc

a ¼
1þbþc

b ¼ aþbþc
c

c
1
¼ bþc

a ¼
aþbþc

b ¼ 1þaþbþc
c

9
>=

>;
)

a2 � 1� b ¼ 0

b2 ¼ 1þ bþ c
c2 ¼ 1þ aþ bþ c

..

.

None of these equalities is used in this work, since all of our results will be obtained

from the identities c ¼ aþ 1, a3 � 3a� 1 ¼ 0 and c3 � 3c2 þ 1 ¼ 0. The relevance

of equation x3 � 3x� 1 ¼ 0 in the construction of the regular nonagon was known

to (Al-Biruni 1954). He showed that the chord of 40� can be found if two cubic

equations x3 � 3x� 1 ¼ 0 and x3 � 3xþ 1 ¼ 0 can be solved (Hogendijk 1979).

However, these equations are not independent and their solutions are related: the

Fig. 13 a Left Gonbad-e Sork’s tower in Maragha, Iran. Photo: Wikimedia Commons; b right detail

Fig. 14 Drawing by the authors of the decoration of the tympanus of Gonbad-e Sork’s tower with the
rosettes formed by irregular equilateral nonagons
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largest solution of the first equation is a = 1.87938524…, while the smallest

solution of the second equation is -a. So, both equations of Al-Biruni imply the

identity a3 � 3a� 1 ¼ 0:

x3 � 3x� 1 ¼ 0 ) a3 � 3a� 1 ¼ 0 ( �a3 þ 3aþ 1 ¼ 0

( �að Þ3�3 �að Þ þ 1 ¼ 0 ( x3 � 3xþ 1 ¼ 0

Also, because of the relation a ¼ c� 1, the substitution for a in the equality

a3 � 3a� 1 ¼ 0, leads to the equality c3 � 3c2 þ 1 ¼ 0.

Applying the cosine law to the triangle ABC in Fig. 8 it follows that

a ¼ 2 cos 20�. Considering the triangles ACD and ADE, this property, combined

with the sine and cosine law, implies that b2 ¼ a2 þ 1þ a and

sin 20�ð Þ ¼
ffiffiffi
3
p �

2bð Þ, respectively. Next, as a ¼ c� 1, the angle of 20� can be

evaluated through the following expressions:

sin 20�ð Þ ¼
ffiffiffi
3
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ aþ 1
p sin 20�ð Þ ¼

ffiffiffi
3
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � cþ 1

p ð1Þ

An extensive algebraic study of the ratios of the regular nonagon can be found in

(Kappraff et al. 2004). In this paper the constants a, b and c, are determined as limits

of the ratios of certain pairs of consecutive terms that are obtained by jumping over

generalized Fibonacci sequences. However, because we are more interested in

geometric aspects, we focus on a different sequence cn:

cn: 1, 1, 1, 3, 8, 23, 66, 190, 547, 1575, 4535, 13058, 37599, 108262,…

cn ¼ 3cn�1 � cn�3 ; n ¼ 4; 5; 6; . . .
cnþ1

cn

:
1

1
;

3

1
;

4

3
;

10

4
;

15

10
; . . . !n!þ1

c ¼ 2:87938524:

It is defined by a recurrence relation, such that the ratios of pairs of consecutive

terms cnþ1=cn converge to c, similar to the Fibonacci sequence, where consecutive

terms converge to the golden section.

Fig. 15 a Left exact trisection of the 60� angle and its importance for constructing the regular nonagon;
b centre approximated trisection of 60�; c right deriving the equilateral nonagon ABCDEFGHI associated
to the hexagon ABDEGH
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A Trisection of the 60� Angle

An accurate classical Greek construction of an angle of 40� using compass and ruler

in a finite steps is impossible. This problem is linked to the classic problem of the

trisection of an angle, and here in the particular case of an angle of 60�, and also to

methods for solving cubic equations (see Hogendijk 1979 and Özdural 2002).

Figure 15a visualizes the equivalence between the construction of the regular

nonagon and the trisection of the angle of an equilateral triangle. It is based on the

construction of a triangle ADE with angles 20�, 60� and 100�, and with sides of

lengths proportional to 1, b and c. We will use consecutive terms of the sequence cn

to construct approximations of that triangle.

Figure 15b shows an equilateral triangle with side cn dissected into an isosceles

triangle with sides d, d and cn � 2cn�1, and two triangles with sides cn, cn�1 and d,

and angles h, 60� and 120� - h. Thus, d2 ¼ c2
n�1 þ c2

n � 2cn�1cn cos 60� and

cn�1=sin h ¼ d=sin 60�. Therefore

sin h ¼
ffiffiffi
3
p

cn�1

2d
¼

ffiffiffi
3
p

cn�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

n�1 þ c2
n � cn�1cn

p ¼
ffiffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cn

cn�1

� �2

� cn

cn�1

� �
þ 1

r : ð2Þ

Note the similarity between the expressions (1) and (2). We approximated the

angle of 20� by the angle h, obtained using the constant c and one of the ratios

cn=cn�1. The terms cn can be expressed in the closed form cn ¼ Axn
1 þ Bxn

2 þ Cxn
3,

where A, B and C are arbitrary constants, and x1, x2 and x3 are the solutions of the

characteristic equation of the recurrence relation x3 � 3x2 þ 1 ¼ 0. Thus, the error

of the approximation c � cn=cn�1 can be evaluated by

cn

cn�1

¼ Axn
1 þ Bxn

2 þ Cxn
3

Axn�1
1 þ Bxn�1

2 þ Cxn�1
3

!n!þ1
c:

Table 1 shows four approximations of the 40� angle using values of 2h obtained

from (2).

For instance, taking c5 ¼ 8 and c6 ¼ 23, we get h = 20.0339…�. This implies a

division of the side of the triangle into 23 parts and results in a dissection into the

parts 8/23, 7/23 and 8/23. The equiangular hexagon shown in Fig. 8 right is

determined by its triangular skeleton and the equiangular hexagon with sides 8 and

diagonals 23 will result in a derived equilateral nonagon with sides 8 and third

diagonal 23. The three central angles will be 2h = 40.0679…�, alternating with two

Table 1 Successive

approximations of c using

cn=cn�1 and the corresponding

approximations of the angle 40�

n cn=cn�1 2h

5 8=3 43.5735785965236�
6 23=8 40.0679870494440�
7 66=23 40.1525538863933�
8 190=66 40.0092482554315�
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angles of 60� � h. The dissection 8/23–7/23–8/23 produces nonagons that are

perceived as regular by the naked eye (Fig. 16).

From the eleventh century, several methods for approximating a construction of

the regular nonagon are known in Islamic architecture. From the elements of the

patterns with hexagons and nonagons, one can guess that the craftsmen applied an

approximated solution of the trisection of the angle of 60�, consciously or not.

However, we have to keep in mind that skilful craftsmen did not make the patterns

by means of quotients of consecutive terms of recurrence sequences, nor by exact

mathematical constructions, but using practical methods. The lack of accuracy in

the geometric construction is obvious in the stucco marble frieze of the Mahfil in

Hagia Sophia (Fig. 3) and in the panel of its minbar (Fig. 5). In contrast, the

woodwork decoration of the minbar of Selimiye Mosque looks almost perfect

(Fig. 2). We will see that the concept of the pattern seems to be the same and so

perhaps the difference in the result can be explained by the materials used to execute

them (wood, stucco, stone, etc.).

The mutual influence of the methods of mathematicians and craftsmen is well-

known. There are several Persian medieval treatises about the ‘conversazioni’

between both groups (see, for example, Hogendijk 1979; Özdural 1996, 2002). Yet,

the texts provide little information about what exactly the craftsmen’s method was.

For instance, the construction of the nonagon is explained in these treatises without

saying how it was actually done, probably because the better construction methods

required solving a cubic equation or studying conics. Perhaps these topics were too

advanced for craftsmen, who preferred methods like trial–error or dissection and

composition. Thus, in view of the practical application, we searched for angles of

about 20� in the shapes composed by simple polygons as the equilateral triangle, the

square, the regular hexagon, the octagon and the dodecagon. Simple procedures for

obtaining angles close to 40� could have been useful for craftsmen to realize the

nonagonal geometric patterns.

Fig. 16 An almost regular nonagon obtained from the dissection 8–7–8 of the side of the equilateral
triangle
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Approximations of the 20� Angle

The 20.1� Angle, Starting from a Square and an Equilateral Triangle or a Regular

Hexagon

The shape shown in Fig. 17a is composed, from top to bottom, by an equilateral

triangle, a square and one half of hexagon, that is, three equilateral triangles. Hence

the angle \POQ is equal to arctg 1
� ffiffiffi

3
p
þ 1

� �� �
� 20:1�.

The angles of 60� and 90� in triangle POQ imply the angle 20.1� can be found in

some semi-regular tessellations composed of hexagons, dodecagons, squares and

triangles. Figure 17 shows the triangle POQ overlapping two semi-regular

tessellations and Fig. 18 the nonagons determined in the corresponding

tessellations.

The 20.1� Angle, Starting from a Regular Octagon and a Dodecagon

The drawing in Fig. 19a is obtained as follows:

1. Draw a regular dodecagon and a chord of 90�, AB. Call its centre O.

2. Draw a regular octagon such that AB is a chord of 90�. Call its centre P.

Fig. 17 a Left the angle of 20.1� from a square and three triangles; b, centre and c, right the 20.1� angle
on two semi-regular tessellations

Fig. 18 Nonagons with angles 40.2�-39.9�-39.9� overlap two semi-regular tessellations
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3. Rotate the octagon over 60� around the point O so that P is mapped onto P’.

4. Call Q the vertex in the dodecagon such that the chord AO is 120�.

5. Drawing the segments PO, PQ and P0; then \OPQ � 39:9� and

\QPP0 � 20:1�.

Using dynamic geometry software (such as Geogebra or Cabri) we can check in

Islamic style, that is, by moving geometric shapes, that both preceding approxi-

mations of 20.1� are identical (Fig. 19b).

The 19.1� Angle

The tessellation by hexagons and equilateral triangles is especially interesting.

Figure 20a determines the angle \POQ ¼ arccos 11=14ð Þ � 38:2� providing the

approximation 19.1� for the 20� angle. This again produces an apparently regular

nonagon in a very simple way (Fig. 20b). The angles of 19.1� and 38.2� can be

constructed by just one single triangular net (Fig. 20c) and will play an important

role in one of the proposed practical construction of the patterns. Note that the

Fig. 19 a Left construction of an angle of 20.1� using an octagon and a dodecagon; b right proof that the
construction given in (a) is equivalent to the construction of Fig. 17

Fig. 20 a left the 38.2� angle based on a hexagon and a six pointed star; b centre a nonagon with angles
38.2� and 40.9�; c right the same nonagon on a triangular net
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nonagon obtained from this method has its centre on the vertex point of \ POQ

which is located in the centre of one of the equilateral triangles of the net.

Figure 21 summarizes some examples where a rosette is seen formed by six

overlapping nonagons centred in the vertices of a hexagonal grid. Each of the

elementary rosettes in these interlocked patterns can be thought of as generated by a

nonagon that turns over 60� five successive times with respect to the centre of the

hexagons of the grid, after decreasing the side of the hexagons of the grid.

Different ratios r between the side of the hexagon and the nonagon lead to

different variations of the pattern that we call pattern p(r). They have different

visual aspects, but are geometrically equivalent. Figure 22 shows some patterns

belonging on the family of patterns p rð Þ : 0\r\þ1f g, ordered by decreasing

ratios.

Note that the overlapping of the nonagons doesn’t happen when

c�
ffiffiffi
3
p

ab=3 � 2:75, and the central star of the rosette becomes like a six-petal

shape if c\
ffiffiffi
3
p

=ð6 sin 10�Þ � 1:66. Thus, we will only consider patterns p(r) such

that
ffiffiffi
3
p

=ð6 sin 10�Þ� c\
ffiffiffi
3
p

ab=3. Assuming that the nonagons are regular, we will

analyse the theoretical pattern p(r) from different points of view. To make it easier,

we again suppose that the length of the side of the nonagon is 1 and the length of

side of the hexagon is r.

Geometric Analysis of the General Family of Patterns p(r)

The interlaced nonagons and hexagons determine a tiling (for the initiated, it is of

type p6 m (*632); see for instance Grünbaum and Shepard 1987) that can be

obtained by edge to edge union of three different components or elementary tiles: I,

an equilateral six-pointed star; II, an irregular convex pentagon we will call house;

III, an irregular concave octagon we will call bow (see Fig. 23).

Some observations concerning the triangle FGO in Fig. 23:

Fig. 21 Patterns found in the examples already considered
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1. The side of the nonagon has length 1. The side of the hexagon has length r, and

is divided in three line segments FA, AB and BG; BC ¼ 1=2.

2. The sides of the hexagon and the nonagons are perpendicular in their

intersections A and B. The points E and C are vertices of the regular nonagons,

and thus

\BCD ¼ \DEA ¼ 140� and\CDE ¼ \HDI ¼ 80�

3. FB is the apothem of the nonagon, so

FB ¼ 1

2 tan 20�
FA ¼ BG ¼ r � 1

2 tan 20�
AB ¼ EC ¼ 1

tan 20�
� r

Fig. 22 Particular cases of the pattern p(r)

Fig. 23 Elementary tiles I, II and III and basic polygon FGO
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ED ¼ DC ¼ 1

tan 20�
� r

� 	
sin 50�

sin 80�
¼ 1� r tan 20�ð Þ

4 sin2 20�

Note that the length of the perimeter of the tiles I, II and III, depends on the value

of the parameter r for given a pattern p(r), though the angles of the tiles are constant.

The angles in the vertices of the star tile I are 80� and 220�; the angles of the house

tile II are 80�, 140� and 90�;and the bow tile III has angles of 120�, 90�, 220�, 100�
and 140�.

The pattern can also be considered as the superposition of three different layers,

L1, L2 and L3 (Fig. 24). Layer L1 is a hexagonal net of side r while layers L2 and L3

are formed by regular nonagons with centres on the vertices of an imaginary

equilateral triangular grid with side
ffiffiffi
3
p

r. Both layers of nonagons L2 and L3

coincide under translation by vectors v1, v2 and v3 (Fig. 24).

Intersection, union and/or subtraction of the layers L1, L2 and L3 determines

different layers L4, L5 and L6 (Fig. 25a), generating the same pattern. Each pattern

p(r) can also be generated by edge to edge addition of a basic polygon (a shape that

covers the tiling using only isometries). Figure 23 showed one of them, but the

smallest polygon with this property is the right triangle V with angles 30�, 60� and

90� and determined by the radius of the hexagon, the apothem of the nonagon and

the half-side of the hexagon between them (Fig. 25b). This small shape covers the

tilling by reflections only. We can also find a rectangular basic polygon, such as VI.

We call these polygons V and VI practical tiles, because their triangular or

rectangular shape makes it possible to use them as a template for a practical

construction, especially for friezes.

Geometrical Analysis of the Practical Patterns

In the practical realizations of the pattern in the grilles, panels and friezes given in

the examples, the nonagons are perceived as regular. However, one can wonder if

Fig. 24 The hexagonal layer L1, the nonagonal layers L2 and L3, and how they come together
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the nonagons were regular in the mind of the designer: what could their

mathematical foundations have been? We will not need measurements, because

careful observation of the patterns gives theoretical arguments suggesting the

designed nonagons are necessarily non-regular.

Figure 26 shows that the extension of one of the radii of the nonagons intercepts

the side of the adjacent hexagon (of which one vertex is the centre of the nonagon)

in the midpoint. This observation is emphasized using overlapping diagrams.

This simple test is valid even with the usual problem of the perspective distortion

of the images, because all the designs are in the plane. If we consider the regular

hexagon of Fig. 27, the shaded triangle will have an angle of 120� between the sides

a and a/2.

Thus:

d ¼
ffiffiffi
7
p

a

2
sin h ¼

ffiffiffi
3
p

2
ffiffiffi
7
p ¼

ffiffiffiffiffi
21
p

14
h ¼ arcsin

ffiffiffiffiffi
21
p

14
� 19:1� ) 2h � 38:2�

This implies that the angles of the nonagons of Selimiye Mosque and Hagia

Sophia are 2h � 38:22� and 60� � h � 40:89�. The same angle was obtained in

Fig. 20 by a semi-regular tessellation.

As for the nonagon and the hexagon displayed in Fig. 28, the extension of the

radius of the nonagon intersects the side of the hexagon at the midpoint and if this

extension is prolonged beyond the midpoint, a vertex of a hexagon is obtained.

Figure 28 presents the parallelogram OABC and the midpoint M where the

diagonals OB and AC intersect FD. It follows that

OB ¼
ffiffiffi
7
p

and sin h ¼ sin 120�
ffiffiffi
7
p ¼

ffiffiffiffiffi
21
p

14
) h ¼ arcsin

ffiffiffiffiffi
21
p

14

� 	

� 19:1�

Note that, in spite of the different locations of the nonagon and the hexagon in

Figs. 27 and 28, the calculations are indeed the same, and they twice yield an angle

Fig. 25 a Left the sub-unities L4, L5 and L6; b right the smaller basic polygon V and the smaller practical
tile VI
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of 19.1� angle. Both graphical properties occur in all of the analyzed practical

patterns. There is thus a very simple way to construct the angles of the nonagons of

all of the examples. We apply the two preceding observations to the theoretical

pattern p(r), where the nonagons are perfectly regular.

The nonagon in Fig. 29 is regular, but a simple glance shows the point B is not

the midpoint of the side AC of the hexagon. Indeed, the three rectangles OAB, DFG

and GFH have angles 20�, 120� and 40�, and thus they are similar; therefore

AC

AB
¼ OA

AB
¼ DF

FG
¼ Fist diagonal of the nonagon

side of the nonagon
¼ a � 1:88;

that is, the ratio AC/AB is constant in all p(r) patterns and equals a, not 2.

Figure 30 visualizes the second observation. Again, it turns out to be only an

approximation when checked out in the theoretical patterns.

Fig. 26 Extending the radius of the nonagon intersects the side of a hexagon in the midpoint

Fig. 27 The symmetry of the pattern and the midpoint property
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For a regular nonagon, \POE ¼ 20� and this is greater than h. Consequently, the

radius OP of the nonagon does not lie on the diagonal OB, and thus the points R and

B are distinct points. Therefore, the construction of the pattern by using exact

regular nonagons is not possible.

Since in all the cases the angles of the practical patterns are the same, the slight

visual differences among the different analyzed patterns are consequences of the

Fig. 28 Above diagrams and details of frieze in the Hagia Sophia (left) and the Selimiye Mosque (right);
below drawing showing the line segment OB, where O is the center of the nonagon, B is the vertex of the
hexagon centered in C and M is the midpoint of FD and OB

Fig. 29 Property of the regular nonagon centered in the vertex of the regular hexagon

Nonagons in the Hagia Sophia and the Selimiye Mosque 175



different ratios between the side of the hexagon and the side of the nonagon. This

can be estimated by the ratios of the three segments obtained from the intercepting

points of the polygons of the grid, as in Fig. 31. If call a–b–a the lengths of the three

parts determined in the side of the hexagon, we observe a ratio b=a around 1.4

�
ffiffiffi
2
p

, in the Hagia Sophia and the Selimiye Mosque. However, in the grill of the

window of the Mausoleum of Shehzade Mehmet this ratio is approximately 1, while

it is close to 2=3 in some similar modern screens.

Finally, according the two preceding observations from Figs. 26 and 27, we

construct the pattern of the frieze of the mahfil in the Hagia Sophia, and we provide

a second method to construct the pattern.

Two Constructions for a Pattern in Hagia Sophia

Construction 1

The angles of the nonagons of a frieze in Hagia Sophia have been already

determined. Thus, in the first step we set out these central angles over a hexagonal

net in the way shown in Fig. 27 (right), and so the nonagon is determined for a given

radius. We observe that one of the vertices of the nonagon, P, is the intersection of

Fig. 30 The extension of the radius OP of the regular nonagon doesn’t pass through vertex B

Fig. 31 Graphic checks to verify that ratios b/a are around 1.4 in the Hagia Sophia (left) and the
Selimiye Mosque (middle); and b/a around 1 in the Mausoleum of Shehzade Mehmet (right)
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the line segment AB and the line passing by O and C (Fig. 32). We locate the points

A, B, C in a Cartesian coordinate system with origin in the center of the nonagon.

The x-axis is the line containing OB, and the side of the hexagon is taken as unit

length.

In this reference system, the coordinates of the considered points are O 0; 0ð Þ,
A �3=2;

ffiffiffi
3
p �

2
� �

, B 6; 0ð Þ and C 1;
ffiffiffi
3
p� �

. Since the segments AB and OC concur in

the point P, it follows that

P k;
ffiffiffi
3
p

k
� �

¼ P 6þ 15l;�
ffiffiffi
3
p

l
� �

) k ¼ �l ¼ 3

8
) P

3

8
;
3
ffiffiffi
7
p

8

� 	

) OP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

8

� 	2

þ 3
ffiffiffi
7
p

8

� 	2
s

¼ 3

4

Thus, point P leads to a very easy value of the radius, 3/4, which is three-quarters

of the side of the hexagon. Figure 33 visualizes the construction of the nonagon.

Because of the rotational symmetry, the rosette can be completed by successive

rotation over 60� of the nonagon with respect to the center of the nearby hexagon

(Fig. 34). A translation of the rosette by the vector v = (3, 0) completes the frieze.

The nonagons of this construction have three sides with length l1 = 3
ffiffiffiffiffi
21
p

/28.

This value of the sides of the nonagon produces dissections a-b-a of the side of

hexagon with ratio b=a ¼ ð30
ffiffiffi
7
p
� 56Þ=ð56� 15

ffiffiffi
7
p
Þ ¼ 1:432. . .. This approxi-

mation corresponds to the graphical estimations of Fig. 31.

Fig. 32 Nonagon of the frieze with three angles of 38.2�, six angles of 40.9�, and radius OP
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Fig. 33 Construction of a nonagon with three angles of 38.2�, six angles of 40.9� and a radius that is 3/4
of the hexagonal net with side 1

Fig. 34 A geometric construction and the real frieze
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Construction 2

The geometric analysis of the theoretical pattern given above guarantees that the

grid of interlocking hexagons and nonagons can be constructed using the basic

polygon V shown in Fig. 25 or from the triangle FGO defined in Fig. 23. However,

it can also be derived based only on the house tile II, over a hexagonal net.

Figure 35 shows the sides EB and EF produce the two sides of the irregular

nonagon. The angles h and \EFG ¼ 360� � 2h determine six angles h and three

angles a in the nonagon, in the order h� h� a.

Fig. 35 The angles of the house tile determine the angles of the nonagons

Fig. 36 House tile for the frieze of Hagia Sophia
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The analysis of Fig. 31 suggest a hypothetic ideal ratio b=a �
ffiffiffi
2
p

, and thus we

assume that the nonagons dissect the side of the hexagon in three segments AB, BC

and CD such that AB = CD and with ratio BC
�

AB ¼
ffiffiffi
2
p

. This choice allows us a

simple way to construct the house tile and complete pattern by intersection of

straight lines in a hexagonal net.

Figure 36 shows the house tile as the union of a rectangle with ratio 2
ffiffiffi
6
p �

3 and

an isosceles triangle inscribed in another rectangle with the same ratio. Note that

2
ffiffiffi
6
p �

3 � 1:6 is an good approximation of the golden section, and thus the pattern

of Hagia Sophia and Selimiye Mosque constructed in this way almost looks as if it

respects the golden section proportion. Figure 37 explains the successive steps to

construct a rosette of the pattern.

Of course, we don’t know the exact procedure of the craftsmen who constructed

the nonagonal patterns on Hagia Sophia and the Selimiye Mosque, but the

hypothesis of a construction in a way similar to our Construction 1 seems quite

realistic.
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